
504-REN-XXX

MISSION OPERATIONS AND DATA SYSTEMS
DIRECTORATE

Renaissance
First Generation Architecture

Catalog of Building Blocks
(DRAFT 3)

XX June 1995

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland

Renaissance
First Generation Architecture

Catalog of Building Blocks
(DRAFT 1)

02 February 1995

Prepared Under Contract NAS5-31260
Task Assignment 4-10-201

Approved By:

Ed Seidewitz Date
Renaissance Team

Management Approval:

Gary Meyers Date
Renaissance Team Leader

Goddard Space Flight Center
Greenbelt, Maryland

Page iii

Preface

This document was developed by the Renaissance Team Application Engineering Group of the
Systems Engineering Office (Code 504), and represents the combined efforts of MO&DSD staff
and supporting contractors of the Systems, Engineering, and Analysis Support (SEAS) and the
Space Network Systems Engineering contracts. The document was integrated by Stanford
Telecommunications Inc. under the Space Network Systems Engineering contract.

This document is under the configuration management of the Renaissance Team. Configuration
Change Requests (CCRs) to this document shall be submitted to the Renaissance Team, along
with supportive material justifying the proposed change. Changes to this document shall be made
by document change notice (DCN) or by complete revision.

Questions and proposed changes concerning this document shall be addressed to:

Ed Seidewitz
Renaissance Application Engineering Group
Code 552.3
Goddard Space Flight Center
Greenbelt, Maryland 20771

Page iv

Abstract

The Renaissance First Generation Architecture Catalog of Building Blocks provides a
description of the subsystem, element, and subelement (TBS) building blocks identified by the
Renaissance Team for use in developing future ground data systems. This document is intended
to support future missions in identifying and selecting components for the design of their ground
data systems.

The Renaissance approach is based on enhanced support for mission requirements, with improved
productivity, through the elimination of redundant mission support elements and a high level of re-
use of application software from mission to mission.

This document describes building blocks (or components) that are applicable across multiple
missions. Mission-specific components, providing capabilities unique to only one (or relatively
few) flight missions, are not included.

This document first provides an overview of a generic "first generation" Renaissance ground data
system architecture to establish the context in which to view the building blocks. The various
categories by which the building blocks are classified are discussed next. The remainder of the
document presents a summary listing of all building blocks followed by a catalog that provides
one-page descriptions for each individual building block. References to associated requirements
documents and/or specifications are provided where available. Due to the nature of the building
block definition and development process, this catalog will be subject to on-going refinement.
Comments, additions, and recommendations for improvement are highly welcome.

Keywords: ground data systems, Renaissance, spacecraft data processing, Catalog, Building
Blocks.

Page v

Contents

Preface iii

Abstract iv

Contents v

1. Introduction

1.1. Background..1-1

1.2. Document Scope and Organization..1-1

1.3. Generic Ground Data System Architecture Concept..1-2

2. First Generation Architecture

2.1. Real-Time Subsystems...2-4

2.1.1. Real-Time Command...2-5

2.1.2. Real-Time Distribution Support..2-6

2.1.3. Real-Time External Interface..2-7

2.1.4. Real-Time History..2-9

2.1.5. Real-Time Simulation...2-10

2.1.6. Real-Time Telemetry..2-11

2.1.7. Real-Time User Interface..2-13

2.2. Off-Line Subsystems...2-15

2.2.1. Off-Line Data Management and Distribution...2-16

2.2.2. Off-Line Data Production and Analysis..2-17

2.2.3. Off-Line Mission Planning and Scheduling..2-19

Page vi

2.2.4. Off-Line Simulation..2-21

2.2.5. Off-Line State Determination and Validation..2-22

2.2.6. Off-Line User Interface Support...2-24

2.3. Foundation Subsystems...2-25

2.3.1. Electronic Mail..2-25

2.3.2. Network Management..2-26

2.3.3. Network Multicast..2-27

2.3.4. Network Security Services..2-27

2.3.5. Network Time Service..2-27

3. Building Block Descriptions

3.1. Element Summary List..3-1

3.2. Subelement Summary List (TBS)..3-17

3.3. Building Block Descriptions...3-17

Glossary

Acronym List

References

List of Figures

Figure 1-1. Mission Ground Data System Context..1-3

Figure 1-2. The Software Backplane Concept..1-4

Figure 2-1. First Generation Architecture Overview..2-1

Figure 2-2. Standard Architecture Diagram Symbols..2-3

Figure 2.1-1. Real-Time Command...2-5

Figure 2.1-2. Real-Time Distribution Support..2-6

Page vii

Figure 2.1-3. Real-Time External Interface..2-8

Figure 2.1-4. Real-Time History..2-9

Figure 2.1-5. Real-Time Simulation...2-10

Figure 2.1-6. Real-Time Telemetry..2-12

Figure 2.1-7. Real-Time User Interface..2-14

Figure 2.2-1. Off-Line Data Management and Distribution...2-16

Figure 2.2-2. Off-Line Data Production and Analysis..2-18

Figure 2.2-3. Off-Line Mission Planning and Scheduling..2-20

Figure 2.2-4. Off-Line Simulation..2-21

Figure 2.2-5. Off-Line State Determination and Validation..2-23

Figure 2.2-6. Off-Line User Interface Support...2-24

Figure 2.3-1. Electronic Mail..2-25

Figure 2.3-2. Network Management..2-26

Figure 2.3-3. Network Time Service..2-27

List of Tables

Table 3-1. Identifier Field Definitions...3-2

Table 3-2. Summary List of Elements...3-3

Table 3-3. Detailed Building Block Descriptions..3-19

1 - 1

1. Introduction

1.1 Background

The Reusable Network Architecture for Interoperable Space Science, Analysis, Navigation, and
Control Environments (Renaissance) is a new approach to providing ground data processing
systems to support Mission Operations and Data Systems (Code 500) customers in a cost
effective, timely manner. This new approach redefines the architecture of the systems developed
by Code 500, the way in which these systems are developed, and the role Code 500 will play in the
operation of these systems.

The Renaissance approach is based on the concept of using reusable building blocks (which may
be hardware, software, and/or firmware) that may be integrated and enhanced to support a single
mission or mission series (such as the Small Explorers). These building blocks incorporate
workstation/file server/LAN technology, widely accepted industry standards, and (when possible
and appropriate) commercial off-the-self (COTS) technology. The design of the building blocks is
focused on mission needs rather than facility boundaries.

This document is a product of the Renaissance Team. The Renaissance Team was chartered by
Code 500 to specifically meet five goals:

a. Identify the building blocks needed to make the Renaissance approach successful.

b. Identify the standards and define the methods necessary to make the development of these
building blocks successful.

c. "Contract" with the Code 500 divisions to implement and maintain the building blocks.

d. Develop a plan for transitioning Code 500 to the new architectural approach.

e. During the transition period, work with mission teams to identify specific architectures for
support of near-term missions using the new building blocks whenever feasible.

1.2 Document Scope and Organization

The purpose of this document is to provide a catalog of Renaissance building blocks for use in
MO&DSD ground data systems. The catalog consists of descriptions of generic building blocks
within the context of the generic Renaissance architecture. Most of the building blocks are
currently available in some, though many are currently undergoing evolution to provide the
complete capabilities described in this catalog. There are also some planned building blocks that are
still under development.

There are two main uses for this catalog. First, it provides the definitive list of Renaissance
building block definitions to be allocated to various MO&DSD "centers of expertise" for

1 - 2

implementation. Second, this list also provides a reference of existing (and planned) Renaissance
building blocks available to support a mission. In addition, the document provides a general
context of how these building blocks fit together to create a complete mission ground data system
architecture.

The organization of this document is as follows:

• The remainder of this section provides an overview of the Renaissance generic ground data
system (GDS) architecture and the context of the building blocks within this architecture.

• Section 2 provides descriptions of the various real-time, off-line, and foundation subsystems
that make up the "first generation" Renaissance architecture. This section provides a
framework for organizing the Renaissance building blocks and understanding their use and
interaction.

• Section 3 provides a summary description of the building blocks and the actual Renaissance
building block catalog. The summary list and catalog are organized according to the
subsystems defined in Section 2. The catalog contains a description page for each of the
Renaissance building blocks. Each description page provides detailed information including a
functional description, performance characteristics, key inputs and outputs, relationship to other
building blocks, the hardware environment, the programming language, disk space
requirements, etc.

1.3 Generic Ground Data System Architecture Concept

Figure 1-1 gives an overview of a satellite ground data system in the Renaissance context. Actual
communications with the satellite is via one or more ground stations. In this context, a "ground
station" may include a Ground Network station, the White Sands ground terminals for the space
network, the Jet Propulsion Laboratory Deep Space Network facility, or any other tracking and
data relay network facility from which a mission may receive data.

Data is transported to and from the ground stations via the "closed" (i.e., secure) MODNet
network. MODNet is a NASA Communications (NASCOM) supported network based on the
commercial Internet protocol (IP). The Mission Operations Center (MOC), the Flight Dynamics
Facility (FDF), and the Integration and Test (I&T) facility are all within the secure perimeter of the
closed MODNet. Security gateways and firewalls provide access from the closed MODNet to the
"open" (unsecured) MODNet and the Internet. The unsecure networks allow connectivity to the
Science Operations Center (SOC) (though this could be placed within the closed MODNet,
particularly if it is located at Goddard).

Of the facilities shown in Figure 1-1, only the FDF is necessarily located at Goddard. All other
facilities may be geographically located any place network connectivity allows. Indeed, it is even
possible to further distribute some of the lower-level functionality shown in Figure 1-1. For
example, level-zero processing could easily be moved from the MOC to the SOC, close to the
primary cutomer of level-zero products. Indeed, for some missions it may be desirable to
completely combine the MOC and SOC operational functions into a single facility located at the

1 - 3

invetigators' site. Ultimately, the orbit-related functions now performed in the FDF will also be
similarly distributable.

The FDF, ground station, and communication facilities are provided institutionally by Code 500.
All other facilities—the MOC, the SOC, and the I&T facility—are developed and tailored
specifically for a mission and operated by mission-dedicated teams. This mission-tailored GDS
approach allows maximum responsiveness to a specific mission's needs. The approach is made
cost effective by integrating the mission-tailored facilities from available Renaissance building
blocks.

The generic Renaissance GDS architecture is based on the principles of frequent building block
reuse and configuration flexibility to achieve cost efficiency. The Renaissance approach seeks to
achieve a high level of reuse among multiple mission GDS implementations by providing a large
suite of building blocks. This large complement of building blocks also allows the flexibility
needed in constructing GDSs with specific mission requirements. The concept, at its simplest, is
analogous to implementing a computer hardware configuration using a pre-existing set of IC
boards, which plug into the system backplane (common among all implementations), and the
selection of specific IC chips to customize some of these boards. Renaissance building block re-
use is based on an architecture concept of software system construction from a family of
interchangeable software components.

Ground Station

Mission
OperationsCenter

Flight Dynamics
Facility

Security
Gateway

Firewall

Closed MODNET Security Perimeter

-Space-ground RF connectivity

-Tracking

-Network communications

-Telemetry recording

-Network scheduling, monitor & control

Internet

Closed
MODnet

Science Operations
Center

Open
MODNet

- Integration & test
- Launch support

-Science operations
-Data production

-Science planning

- S/C operations
- Mission planning
- Attitude determination

- Level zero processing
- Data management

- Orbit determination
- Orbit maneuver planning
- Acquisition planning

Ground Station

- Prelaunch test

I & T Facility

Figure 1-1. Mission Ground Data System Context

1 - 4

The Renaissance GDS software is partitioned into subsystems, elements, and subelements. A
subsystem comprises those software elements which together perform a high level service for the
system, e.g., spacecraft operations monitoring. Software elements are those software components
that communicate with other elements only through a "software backplane" (see Figure 1-2). The
software backplane provides a common set of distributed communication and control mechanisms
via a suite of standard application programming interfaces (APIs).

A software element is constructed from subelements that may be linked together or may be
separate tasks or processes. A subelement is defined to be a software component which requires
separate specification to support flexibility of configuration for support of a specific mission. The
subelements of a single element are generally expected to all reside on a single platform.
Subelements within a software element may communicate among themselves by means other than
the software backplane.

Those software components which provide the functionality of the software backplane are
considered to be separate from the software elements. These software components will generally

B a c k p l a n e I m p l e m e n t a t i o n S o f t w a r e

S o f t w a r e
E l e m e n t

S o f t w a r e
E l e m e n t

S o f t w a r e
E l e m e n t

T a i l o r i n g S u b e l e m e n t s

S u b s y s t e m

S o f t w a r e B a c k p l a n e A P I s

Figure 1-2. The Software Backplane

1 - 5

include the mission specific operating system and support utilities which are provided for the
mission-selected platforms and networks. Note that while the backplane components themselves
may change from one mission implementation to the next, the standard backplane APIs do not.

The generic architectural concepts cataloged here are more fully described in the Renaissance
Generic Architecture document (reference TBD). The building blocks discussed in the present
building block catalog are primarily intended for use within the context of the MOC, though they
can also provide the basis for at least some of the capabilities of the other facilities. Further
guidance on the use and tailoring of building blocks within the Renaissance generic architecture can
be found in the Renaissance Configuration Guide (reference TBD).

1 - 1

2. First Generation Architecture

In order to remain competitive with other emerging alternatives, the MO&DSD needs to move
towards an integrated GDS approach not just in the long term, but also for near-to-medium term
missions This includes mission such as ACE, TRACE and Landsat-7, which the Directorate is
already committed to support. Cost-effectively supporting such near-term missions requires
Renaissance to leverage off existing ground data system legacy.

In order to deal with this near-term problem, the Renaissance Team has defined a “first
generation” architecture that evolves from current real-time and off-line data system approaches.
This allows the adaptation of legacy software while moving to state-of-the-practice technology and
standards. Unfortunately, the MO&DSD currently has disparate real-time and off-line legacies that
are not easily integrated. Thus the first generation architecture will not achieve the full integration
and interoperability that is the goal of Renaissance. Nevertheless, it will provide a competitive near-
term solution while work continues on a state-of-the-art “second generation” approach.

Figure 2-1 diagrams the first-generation Renaissance generic architecture at a high level (see also
the Renaissance Generic Architecture document (reference TBD). As shown, it is divided into
three major segments:

• Real-time software that deals with the command, control and monitoring of spacecraft.
The architecture of this software is based on the legacy Transportable Payload Operations
Control Center (TPOCC) architecture (Zhu, 1994) and focuses on the real-time flow of
data and commands.

Bridge

Users/Customers

Foundation
• Common Desktop Environment
• Distributed Computing Environment
• X/Open Spec 1170

Spacecraft
Communications
Connectivity

Real-Time Software
• Command and control
• Monitoring

Off-Line Software
• Planning
• Analysis
• Data Processing

• Internet Protocol

Figure 2-1 First Generation Architecture Overview

1 - 2

• Off-line software that deals with mission planning, analysis and data processing,
including delivery of products to external customers. The architecture of this software is
based primarily on work done for the Flight Dynamics Distributed System (FDDS)
(Green, 1994), the Packet Processor II (Pacor II) system (Principe, 1993) and mission
planning and command management systems. It focuses on the long-term management
and processing of stored data.

• A common foundation underlies both the real-time and off-line software. This foundation
is composed of COTS software that conforms with industry standards such as the
Common Desktop Environment (CDE), the Distributed Computing Environment
(DCE) and the X/Open Spec 11/70 (see the Renaissance Standards document for a
complete discussion of the standards adopted for the foundation (Stottlemyer, 1994).

The software backplane approach discussed in Section 1.3 is used in each of the real-time and off-
line segments. However, there is not a common backplane across all real-time and off-line
software. Instead, there is a restricted “bridge” of interfaces between the real-time and off-line
software consisting primarily of shared data files.

The remainder of this document deals only with the first generation Renaissance architecture. This
section gives an overview of each of the subsystems in each of the segments of this architecture.
The next section provides detailed descriptions of each of the elements shown here. The elements
included here are primarily “software elements” in the sense discussed in Section 1.3. However,
there are a few instances in which a hardware/firmware solution provides an alternative or a
replacement for a software solution (e.g., level-zero processing and frame gateway hardware). For
completeness, these hardware building blocks are included here in appropriate subsystems with
related software elements.

The following subsections include an "architectural diagram" for each Renaissance subsystem.
These diagrams are included to show the context in which each element operates and the
interconnections among the elements. Figure 2-2 shows the meaning of the symbols used in these
diagrams.

1 - 3

Element Number
Element Name

Software
Element

Filename

Subsystem Name
(Element Name)

File

Subsystem
Any Subsystem

Flow to
Multiple
Subsystems

External Interface
Name

Data Flow
to External
Interface

Data Flow

Control Flow

Shared
Memory TableTable Name

Figure 2-2. Standard Architecture Diagram Symbols

1 - 4

2.1 Real-Time Subsystems

The real-time software elements execute during spacecraft contacts to monitor the health and safety
of the spacecraft and to perform command and control functions. The real-time software is
divided into seven subsystems, as described in the following paragraphs. Each of the software
elements in the real-time architecture communicate using one or more of the real-time software
backplane application programming interfaces (APIs). These APIs have been principally drawn
from the TPOCC architecture and include the following types of interfaces:

• shared memory (shmem_util)

• data server (libds)

• packet (libpkt)

• external interface (libtnif)

• STOL/State Manager (UTL_StmgrIf)

• event logging (events_util)

In each case the name of the current TPOCC API library has been shown in parentheses. Details
on these interfaces may be found in TPOCC documentation (Schwarz, 1993; Zhu, 1994).

In addition, real-time elements may read and write files that are generated and/or used by off-line
elements. These files provide the “bridge” between the real-time and off-line software and are
shown on the architecture diagrams below for each subsystem. There may also be set-up,
configuration or other internal files that are used by the various real-time elements. To avoid
clutter, these are considered to be part of the elements themselves and are not shown on the
diagrams.

1 - 5

2.1.1 Real-Time Command

The Real-Time Command subsystem transmits real-time commands and command loads to the
spacecraft and verifies that these commands have been received successfully. The Real-Time
commanding element accesses the command ODB generated from the Off-Line Data
Management and Distribution subsystem and receives command loads from the Off-Line Mission
Planning subsystem. It also updates the ground reference image (GRI) database for use by the
Off-Line State Determination and Validation subsystem.

Commands are sent out of the control center via the External Network Interface (ENIF) which
passes a copy of each outgoing block to the Command Echo Processor. This element then
compares the outgoing commands against the echoes received from ENIF and reports any
discrepancies.

COMMAND
ODB

REAL-TIME HISTORY
(Event Logger)

DISTRIBUTION
SUPPORT

RT-CM-01
REAL-TIME

COMMANDING

SYSTEM
VARIABLES

EXTERNAL INTERFACE
(External Network

Interface)

COMMAND
LOADS

RT-CM-02
COMMAND ECHO

PROCESSOR

GROUND
REFERENCE

IMAGE
DATABASE

Figure 2.1-1 Real-Time Command

1 - 6

2.1.2 Real-Time Distribution Support

The Real-Time Distribution Support subsystem supports the distributed processing real-time
architecture by transferring data and control messages to interested software elements executing on
any network host. The Data Server element allows elements on remote hosts to gain access to
information stored in the system variable shared memory table and event-driven data. The State
Manager maintains overall control of the real-time system by only allowing user actions that are
permissible given the current state of the ground system. The software backplane APIs for the
Data Server and the State Manager are provided by the libds and UTL_StmgrIf libraries,
respectively.

NOTE

Some software elements inherited from the TPOCC front-end
architecture currently directly access the system variable shared
memory table rather than using the Data Server. The Renaissance
architecture does not specifically call for a dedicated front end, but
obviously all software elements that directly access the system
variable shared memory must reside on the same platform. It is
intended to eventually evolve away from any access to system
variables other than through the Data Server, allowing greater
flexibility of software distribution. The current software backplane
APIs for accessing the system variable table are provided by the
shmem_util library.

RT-DS-02
STATE

MANAGER

REAL-TIME HISTORY
(Event Logger)

USER INTERFACE
(System Test & Ops Lang)

SYSTEM
VARIABLES

ANY
SUBSYSTEM

RT-DS-01
DATA SERVER

ANY SUBSYSTEM
(Data Client)

ANY SUBSYSTEM
(Data Source)

Figure 2.1-2 Real-Time Distribution Support

1 - 7

2.1.3 Real-Time External Interface

The Real-Time External Interface subsystem provides communication services between the
ground data system and external elements such as the spacecraft, the tracking and data network
ground stations, and the Network Control Center (NCC). Two gateway elements are provided that
convert serial bit streams into the IP protocol used internally by the Renaissance architecture. The
Frame Gateway element for telemetry data is preferentially located at the ground station rather than
in the MOC, so that all wide-area communication is via the IP protocol (as discussed in Section
1.3). The frame gateway may also be used in an integration and test facility to provide direct
connectivity with the spacecraft on the ground. It is also possible to locate a frame gateway in the
MOC so that telemetry may be received using the older Nascom serial protocol. The Nascom to
TCP/IP Gateway element provides similar connectivity to the old Nascom network for non-
telemetry data.

The External Network Interface (ENIF) element receives incoming messages using the IP
protocol and filters them to the appropriate element for further processing. These additional
functions include calculating frame statistics, handling embedded frame synchronization, extracting
and serving packets, and providing communications support for various types of networks (NCC,
DSN, etc.). The ENIF is also used as a standard interface for sending real-time data (such as
commands) out of the MOC over external networks. The software backplane APIs for ENIF are
provided by the libtnif library. The APIs for the Packet Extractor/Server are provided by the libpkt
library.

1 - 8

NCC
ODB

RT-EX-01
FRAME

GATEWAY

COMMAND RT-EX-03
EXTERNAL
NETWORK

INTERFACE

SYSTEM
VARIABLES

RT-EX-02
NASCOM TO

TCP/IP
GATEWAY

REAL-TIME
SIMULATIONS

REAL-TIME
HISTORY

DISTRIBUTION
SUPPORT

RT-EX-07
MONITOR

BLOCK
PROCESSOR

RT-EX-08
NCC

COMMUNICATIONS

RT-EX-06
TELEMETRY

VCDU
STATISTICS

RT-EX-04
CCSDS FRAME

SYNCHRONIZER

RT-EX-05
PACKET

EXTRACTOR/
SERVER

SYSTEM
VARIABLES

REAL-TIME HISTORY

TELEMETRY

DISTRIBUTION
SUPPORT

REAL-TIME HISTORY
(Event Logger)

SPACECRAFT NASCOM

SYSTEM
VARIABLES

DISTRIBUTION
SUPPORT

Figure 2.1-3 Real-Time External Interface

1 - 9

2.1.4 Real-Time History

The Real-Time History subsystem captures all real-time data coming into or out of the ground data
system and logs it to disk for later review and/or reprocessing. The History Logger element can
log telemetry data at both the frame and packet level. The History Replay element may then be
used to replay logged telemetry through the Real-Time Telemetry subsystem and/or the External
Interface subsystem and, via this, the rest of the real-time software. The history data may also be
viewed and analyzed using the Off-Line Data Production and Analysis subsystem.

The Event Logger logs all real-time system event messages for later viewing using the Off-Line
Data Production and Analysis subsystem. The software backplane APIs for the event logger are
provided by the events_util library.

NOTE

The current TPOCC “history processor” provides both history
delogging and replay. However, delogging is properly an off-line
activity and thus more logically included in the off-line segment.
Further, this approach allows the traditional TPOCC history
delogging to be expanded to also include level-zero data analysis
functions (see Section 2.2.2 on the Off-Line Data Production and
Analysis subsystem).

RT-HS-02
HISTORY LOGGER

HISTORY
FILES

EXTERNAL INTERFACE
DISTRIBUTION

SUPPORT
(State Manager)

TELEMETRY

RT-HS-03
HISTORY REPLAY

EXTERNAL INTERFACE
DISTRIBUTION

SUPPORT
(State Manager)

ALL SUBSYSTEMS RT-HS-01
EVENT LOGGER

USER INTERFACE

SYSTEM
VARIABLES

SYSTEM
VARIABLES

Figure 2.1-4 Real-Time History

1 - 10

2.1.5 Real-Time Simulation

The Real-Time Simulation subsystem provides simulation support to test the real-time ground data
system. These software elements generate appropriate telemetry streams for a given mission and
accept commands from the ground system. The high-fidelity Spacecraft Simulator also employs
spacecraft models to realistically alter telemetry based on command receipt. Both types of
simulators draw on information originating in the project data base (via the Off-Line Data
Management and Distribution subsystem) to accurately simulate the behavior of a particular
spacecraft.

NOTE

The current TPOCC Advanced Spacecraft Simulator (TASS) is the
closest legacy simulator at this time to the architecture of the Real-
Time Simulation subsystem. TASS needs to only switch its local
history subsystem for the generic version to realize this architecture.
However, despite its name, TASS only provides telemetry
simulation functionality, not full spacecraft simulation. There has
already been some work, though, in integrating high-fidelity
spacecraft simulators into the TPOCC environment which would be
compatible with the architecture of this subsystem.

RT-SM-01
REAL-TIME

SPACECRAFT
SIMULATOR

EXTERNAL INTERFACE
(External Network

Interface)

COMMAND
ODB

RT-SM-02
REAL-TIME

TELEMETRY
SIMULATOR

TELEMETRY
ODB

REAL-TIME HISTORY

DISTRIBUTION
SUPPORT

Figure 2.1-5 Real-Time Simulation

1 - 11

2.1.6 Real-Time Telemetry

The Real-Time Telemetry subsystem processes telemetry data received from the spacecraft. This
data is received by this subsystem from either the History Replay element or the Packet
Extractor/Server. In turn, the telemetry software elements produce raw and engineering unit
converted telemetry parameters and dump image files. Sets of telemetry parameters are passed on
to other elements within this subsystem that check the spacecraft configuration, compute derived
telemetry parameters according to predefined equations, perform real-time attitude determination,
and generate telemetry subset files. Level-zero data sets are produced either by the high-speed LZP
element in this subsystem or the off-line LZP software in the Off-Line Data Production and
Analysis subsystem. Attitude measurement and estimation data files and dump image files are
created by this subsystem and passed to the Off-Line State Determination and Validation
subsystem. Subset files may be used both for trend analysis in the Off-Line Data Production and
Analysis subsystem and as input to Off-Line State Determination and Validation.

NOTE

The Hardware Level-Zero Processor is intended for use with very
high telemetry data rates. It is used as a replacement for, rather than
in conjunction with, the software Level-Zero Processor element. (Of
course, different facility systems may use different LZP solutions,
e.g., software LZP in the MOC but hardware LZP in the SOC.)
Note that the hardware element receives raw data directly from the
frame gateway (possibly over a wide-area network), bypassing both
the ENIF and the packet extractor/server.

1 - 12

TELEMETRY
ODB

RT-TM-01
TELEMETRY

DECOMMUTATION

REAL-TIME HISTORY
(History Replay)

EXTERNAL INTERFACE
(Packet Extractor/

Server)

DISTRIBUTION
SUPPORT

RT-TM-08
REAL-TIME
ATTITUDE

DETERMINATION

RT-TM-02
CONFIGURATION

MONITOR

RT-TM-07
GENERIC

EQUATION
PROCESSOR

RT-TM-03
MEMORY/

TABLE DUMP
COLLECTION

RT-TM-04
REAL-TIME SUBSET

GENERATION

SUBSET
FILES

SYSTEM
VARIABLES

TELEMETRY
ODB

LEVEL-ZERO
DATA SETS

EXTERNAL INTERFACE
(Packet Extractor/

Server)

REAL-TIME HISTORY
(Event Logger)

EVENTS FROM
ALL TASKS

RT-TM-06
HIGH-RATE

LEVEL-ZERO
PROCESSOR

DUMP
IMAGE
FILE

EXTERNAL INTERFACE
(Frame Gateway)

SYSTEM
VARIABLES

PROCESSED
MEASUREMENT

FILES

STATE
PARAMETER
ESTIMATES

SYSTEM
VARIABLES

ENVIRON-
MENTAL DATA

FILES

Figure 2.1-6 Real-Time Telemetry

1 - 13

2.1.7 Real-Time User Interface

The Real-Time User Interface subsystem provides the user interface to monitor and control the
other real-time subsystems. This subsystem requests data from the data server to produce both
graphical displays and ASCII reports. These displays can include text and two-dimensional
graphics (i.e., using the Real-Time Display and Generic Spacecraft Analyst Assistant elements) or
three-dimensional displays of the spacecraft’s orbital environment (using the Space Camera
element). The subsystem also includes the System Test and Operations Language element that is
used to syntactically check directives and to script operator activity. Finally, the subsystem
provides support for listing event messages to a dedicated line printer.

NOTE

The Real-Time Display, Generic Spacecraft Analyst Assistant
(GenSAA), and Space Camera elements are based on independently
developed legacy user interface systems. Eventually, it would be
desirable to combine these separate user interfaces into a single,
consistent display element. In addition, the GenSAA element
includes an expert system inference engine that could be better used
as a separate, stand-alone element or combined with the generic
equation processing element in the Real-Time Telemetry subsystem.

1 - 14

RT-US-02
GENERIC

SPACECRAFT
ANALYST

ASSISTANT

DISTRIBUTION SUPPORT REAL-TIME HISTORY
(Event Logger)

RT-US-03
SPACE

CAMERA

RT-US-04
SYSTEM TEST

AND
OPERATIONS
LANGUAGE

RT-US-01
REAL-TIME
DISPLAY

RT-US-05
REPORTS

RT-US-06
EVENT

PRINTER

UID
DISPLAY

DEFINITION
FILES

UID
DISPLAY

DEFINITION
FILES

STOL
PROCEDURE

FOREIGN
DIRECTIVE

FILE

Figure 2.1-7 Real-Time User Interface

1 - 15

2.2 Off-Line Subsystems

The off-line software elements are typically operated between spacecraft contacts to perform
system housekeeping functions (such as the distribution of data produced by the MOC) and to
assist in the identification and planning of future mission events (though there is no restriction on
their use during a spacecraft contact other than availability of resources). The off-line software is
divided into six subsystems, as described in the following paragraphs. Each of the software
elements in the off-line architecture communicate using stored data that is accessed via the off-line
software backplane application program interfaces (APIs). These APIs are based on distributed
SQL (for relational database access) and POSIX-compliant system calls (for flat file access). The
subsystem architecture diagrams below show all stored data files used for communication between
off-line elements, or as bridges to real-time software. There may also be set-up, configuration or
other internal files that are used by the various off-line elements. To avoid clutter, these are
considered to be part of the elements themselves and are not shown on the diagrams.

2.2.1 Off-Line Data Management and Distribution

The Off-Line Data Management and Distribution subsystem supports the distribution of data to
external users, the management of internal data, and the initiation of data processing activities. The
Data Distribution element delivers datasets to external users according to predefined distribution
specifications. The File Services element manages the backup, archival, and retrieval of datasets
according to predefined data management specifications. The General File Formatter element
reformats files for use by other applications. The Data Management User Interface updates the
data management specifications used by the Data Distribution, File Services and General File
Formatter elements. The Processing Initiation element is responsible for scheduling and executing
data processing tasks according to a schedule that is a combination of tasks that are started on an
absolute time basis and others that are started based on either data availability and/or prior task
completion. In addition to the generic management and distribution of data, this subsystem
includes the ODB Generation element which generates the operations databases (used by a number
of real-time elements) from the project database. (The creation and management of the project
database is a mission-specific function and is not shown here).

1 - 16

PROCESS
SCHEDULES

ANY
FILES

DATABASES FILE CATALOG
MANAGEMENT

DATABASE

OL-DM-03
DATA

MANAGEMENT
USER INTERFACE

OL-DM-05
FILE

SERVICES

OL-DM-01
DATA

DISTRIBUTION

OL-DM-02
PROCESS
INITIATION

External
Users

process
initialization
commands

OL-DM-04
ODB

GENERATION

COMMAND
ODB

NCC
ODB

TELEMETRY
ODB

PROJECT
DATABASE

OL-DM-06
GENERAL

FILE
FORMATTER

Figure 2.2-1 Off-Line Data Management And Distribution

1 - 17

2.2.2 Off-Line Data Production and Analysis

The Off-Line Data Production and Analysis subsystem supports the activities necessary to process
and analyze data. This subsystem provides the ability to generate level zero processed datasets,via
the Level Zero Processor, browse information stored in the history files (produced by the Real-
Time History subsystem) and level-zero data files via the Events Browser and the Data Browser
and Editor. The Data Browser and Editor also provides the ability to edit telemetry data to remove
errors in order to successfully level-zero process the data. The LZP User Interface element
provides the ability to setup, monitor, and control the Level Zero Processor. The Trend Analysis
element provides a general capability to analyze telemetry subset data generated either in real-time
(in the Real-Time Telemetry subsystem) or off-line from level-zero processed data (by the High
Speed Off-Line Subset element). The subset files produced are also used in other off-line
subsystems. Finally, for missions that use time-division multiplexed (TDM) data (such as ACE)
the TDM Processor provides the functionality to extract TDM major and minor frame statistics
from the level-zero processed data sets and generate reports based on this information.

NOTE

The Data Browser and Editor element combines the functionality of
history delogging from TPOCC with quality analysis from Pacor II.
This is consistent with a view of telemetry “history” as including
data from all phases of processing: frame, packet and level-zero.
The functions performed by the Data Browser and Editor are
similar for all levels of data. Note also that events data is included in
the definition of the history files here. The Events Browser is
intended to be a more sophisticated version of the TPOCC event
delogger.

1 - 18

OL-DP-01
LZP USER

INTERFACE

LZP
DATABASE

OL-DP-03
DATA

BROWSER
AND EDITOR

HISTORY
FILES

LEVEL-ZERO
DATA SETS

OL-DP-04
HIGH SPEED

OFF-LINE
SUBSET

OL-DP-05
TRENDING
ANALYSIS

OL-DP-06
TDM

PROCESSOR

SUBSET
FILES

DATA MANAGEMENT &
DISTRIBUTION

(Data Distribution)
FILE

CATALOG

OL-DP-02
EVENTS

BROWSER

OL-DP-07
LEVEL-ZERO
PROCESSOR

Figure 2.2-2 Off-Line Data Production and Analysis

1 - 19

2.2.3 Off-Line Mission Planning and Scheduling

The Off-Line Mission Planning and Scheduling subsystem provides the information required for
communications scheduling, maneuver support, and onboard spacecraft control. This subsystem
includes various prediction capabilities, uplink table and command load generation, and planning
and resource scheduling.

The functions within this subsystem are highly intertwined. For example, various predicted
parameters (based on state parameter estimates from the Off-Line State Determination and
Validation subsystem) are passed to the remaining functions in order to accomplish required
control and scheduling support. The key to this interaction is a centralized mission planning
database. This database may be accessed and updated using the Planning and Resource Scheduling
User Interface. Changes to the database, via the user interface or other planning element, may
trigger processing in appropriate elements to perform consistency checking and any other
necessary processing.

The outputs from this subsystem are extracted from the mission planning database. These outputs
are typically used by the mission operations team as well as external entities, such as the
communications network, science operations center and centers of expertise. In addition, the
Command Script Generation element uses scheduling and other information in the mission
planning database to generate command scripts. The Load Generation element then uses these
scripts to generate command loads. These loads are then passed to the Real-Time Command
subsystem for uplink to the spacecraft.

NOTE

This architecture is based on the mission planning “data manager”
architecture used for the legacy Mission Operations Planning and
Scheduling System (MOPSS). As has been proposed for MOPSS,
this architecture also integrates command script generation with
mission planning, though the exact legacy for the Command Script
Generation element has not yet been fully determined. Also note that
while the Load Generation function is often largely mission-specific
there is a great deal of underlying commonality with parts of the
generic Real-Time Commanding element. Further, the availability of
generic commanding software in general may influence spacecraft
designers to create compatible command systems across missions.

1 - 20

STATE
PARAMETER
ESTIMATES

OL-MP-10
CONTACT

PREDICTION

OL-MP-08
SPACECRAFT
EPHEMERIS
PREDICTION

OL-MP-06
ATTITUDE

MANEUVER
PLANNING

OL-MP-09
SENSOR

PREDICTION

MISSION
PLANNING
DATABASE

OL-MP-05
UPLINK

PARAMETER
GENERATION

OL-MP-01
PLANNING AND

RESOURCE
SCHEDULING

OL-MP-07
ORBIT

MANEUVER
PLANNING

OL-MP-02
PLANNING AND

RESOURCE
SCHEDULING

USER INTERFACE

OL-MP-03
COMMAND

SCRIPT
GENERATION

COMMAND
SCRIPTS

OL-MP-04
LOAD

GENERATION

COMMAND
LOADS

OL-MP-11
EXTERNAL

PLANNING DATA
INGEST

DATA MANAGEMENT
AND DISTRIBUTION

(Data Distribution)

FILE CATALOG

ANY
SUBSYSTEM

OL-MP-13
ACQUISITION

DATA
GENERATION

OL-MP-12
ORBITAL
EVENTS

PREDICTION

OL-MP-14
SCIENCE

INSTRUMENT VIEW
PREDICTION

OL-MP-15
NCC

PLANNING

NCC

ENVIRON-
MENTAL DATA

FILES

ENVIRON-
MENTAL DATA

FILES

Figure 2.2-3 Off-Line Mission Planning and Scheduling

1 - 21

2.2.4 Off-Line Simulation

The Off-Line Simulation subsystem generates simulated spacecraft data. This subsystem employs
high-fidelity models in order to predict spacecraft behavior for a user-specified set of conditions.
The elements of this subsystem provide both history files and simulated telemetry streams
containing the resulting spacecraft state parameters.

The data from this subsystem is passed to the Off-Line Mission Planning and State Determination
and Validation subsystems for testing. mission planning, and operator training. The mission
planning functions include, but are not limited to, maneuver design, thermal and power modeling,
and attitude prediction. Operators are trained with this subsystem in all off-line telemetry and
mission planning operations.

NOTE

The Off-Line Spacecraft Simulator is similar in function to current
Flight Dynamics Division high-fidelity simulators, except it
includes the modeling of non-flight-dynamics-related spacecraft
systems. The Off-Line Telemetry simulator is similar in function to
the current GTSIM system, except that it must also pack simulated
telemetry data appropriately in simulated packets. It is intended that
the off-line simulators should evolve to maximize software
commonality at the subelement level with their Real-Time
Simulation subsystem counterparts.

OL-SM-01
OFF-LINE

SPACECRAFT
SIMULATOR

HISTORY
FILES

OL-SM-02
OFF-LINE

TELEMETRY
SIMULATOR

SUBSET
FILES

PROCESSED
MEASUREMENT

FILES

STATE
PARAMETER
ESTIMATES

Figure 2.2-4 Off-Line Simulation

1 - 22

2.2.5 Off-Line State Determination and Validation

The Off-Line State Determination and Validation subsystem provides elements that determine the
spacecraft flight dynamics and on-board systems state. Flight dynamics state determination
consists of processing telemetry subset files (from either the Real-Time Telemetry subsystem or
the Off-Line Data Production and Analysis subsystem) and then using these measurements to
estimate the spacecraft attitude and attitude sensor alignment and calibration parameters. These
state parameter estimates can be distributed as products as well as used to validate on-board state
parameter computations and to monitor sensor degradation and many other phenomena. The state
parameter estimates are also used by the Off-Line Mission Planning subsystem and by the Real-
Time Attitude Determination element of the Real-Time Telemetry subsystem.

The Ground Reference Image Maintenance element is used to maintain and analyze the ground
reference image (GRI) of the on-board systems state. This generally consists of an image of the
OBC memory and the state of any other relevant on-board hardware. The GRI may be manually
updated by the operator, updated by the Real-Time Commanding element (in the Real-Time
Command subsystem) based on actual commands sent to the spacecraft, or predicted based on a
planned command load from the Off-Line Mission Planning subsystem. The Ground Reference
Image Maintenance element also allows the current or predicted GRI to be compared against a
dump/image file generated by the Real-Time Telemetry subsystem in order to validate the
operation of the spacecraft.

NOTE

Currently, the TPOCC effort and the Flight Dynamics Division are
in the process of defining a special ASCII "attitude telemetry file"
that is created by special TPOCC software that reads data from the
data server. The Renaissance architecture defines the use of subset
files, also used for other purposes, instead of a special-purpose
attitude interface. Note also that it may be useful to give some
additional consideration in the future to how the GRI and attitude
state determination and validation functions might be more tightly
combined. Orbit determination capabilities may also be added to this
subsystem.

1 - 23

SUBSET
FILES

OL-SD-02
 NON-REAL-TIME

ATTITUDE
DETERMINATION

OL-SD-03
 GROUND

REFERENCE IMAGE
MAINTENANCE

OL-SD-04
STATE

PARAMETER
VALIDATION

STATE
PARAMETER
ESTIMATES

OL-SD-01
ATTITUDE
SENSOR

ALIGNMENT AND
CALIBRATION

PROCESSED
MEASUREMENT

FILES

GROUND
REFERENCE

IMAGE
DATABASE

DUMP
IMAGE
FILE

COMMAND
LOADS

OL-SD-05
ATTITUDE

MEASUREMENT
PROCESSING

ENVIRON-
MENTAL DATA

FILES

Figure 2.2-5 Off-Line State Determination and Validation

1 - 24

2.2.6 Off-Line User Interface Support

The Session Manager element provides a general capability for running, sequencing and
monitoring other off-line elements as well as a parameter editor that allows the operator to browse
and edit setup parameter files for other elements. This is the primary overall executive capability
for the off-line segment. The Session Manager initiates and monitors other elements using
operating system and/or distributed system APIs.

The Off-Line User Interface Support subsystem also provides the off-line capability to create
custom user interface displays for use by the Real-Time Display element (in the Real-Time User
Interface subsystem). The Display Builder element generates user interface language (UIL) files of
display definitions that are then translated by the UIL Compiler into user interface definition (UID)
files that can be used by the Real-Time Display element. (Both the Display Builder and the UIL
Compiler are COTS products).

The STOL syntax checker is used to verify new STOL procedures prior to use in the real-time
elements of the system.

NOTE

The Session Manager element is based on the session manager concept from the legacy Flight
Dynamics Distributed System User Interface/Executive (UIX). Currently most off-line legacy
applications have not been designed to operate with the UIX session manager (or, in particular, to
use the parameter files it creates), so some adaptation will be necessary (of the UIX session
manager and/or other legacy applications). Also, note that the display building capabilities of this
subsystem are currently only used for the Real-Time User Interface. Legacy off-line systems
currently use a wide range of user interface approaches. It is planned to eventually evolve these into
a more common approach, in which case it may be possible to generalize the user interface
building capabilities of this subsystem.

OL-UI-03
UIL

COMPILER

OL-UI-02
DISPLAY
BUILDER

UIL
DISPLAY

DEFINITION
 FILES

UID
DISPLAY

DEFINITION
 FILES

OL-UI-01
SESSION

MANAGER

ALL
SUBSYSTEMS

OL-UI-04
 STOL SYNTAX

CHECKER

STOL
PROCEDURE

FOREIGN
DIRECTIVE

FILE

Figure 2.2-6 Off-Line User Interface Support

1 - 25

2.3 Foundation Subsystems

Much of the foundation software is system software based on the various open-system standards
discussed in the Renaissance Generic Architecture (reference TBD) and Renaissance Standards
(Stottlemyer, 1994) documents. The software supporting these basic system capabilities is not
included in this catalog. However, there are certain general capabilities that are built on top of this
lower-level foundation but which are not specific to either the real-time or off-line architecture
segments. The software for these capabilities is grouped into four subsystems discussed in the
following paragraphs and the corresponding elements are included in the catalog in Section 3. All
the elements in the foundation subsystems are COTS software and the capabilities they provide is
generally available to all other (real-time and off-line) subsystems.

2.3.1 Electronic Mail

The Electronic Mail (EMAIL) Engine provides a general capability for creating, distributing and
receiving electronic messages and also sending FAXs via the FAX Server. The EMAIL Agent
provides access to this capability for user of the ground data system. However, applications can
also directly access the EMAIL Engine in order to use the electronic mail capability for the
automated sending and receipt of data.

ANY SUBSYSTEM

F-EM-03
EMAIL
AGENT

F-EM-04
FAX

SERVER

F-EM-01
EMAIL

ENGINE

F-EM-02
EMAIL

DIRECTORY
SERVICE

Figure 2.3-1 Electronic Mail

1 - 26

2.3.2 Network Management

The Network Management System provides an umbrella for monitoring, management and control
of networking and communications components, applications, file servers and workstations in the
ground data system. It gathers information from Network Management Agents that monitor
network hardware components and Remote Monitoring Agents that monitor remote applications.
These agents contain network management information bases that collect the information needed
by the Network Management System.

ANY SUBSYSTEM

REMOT E
MONITORING

AGENT

NETWORK
MANAGEMENT

SYSTEM

NETWORK
MANAGEMENT

AGENT

F-MN-03

F-MN-01 F-MN-02

Figure 2.3-2 Network Management

1 - 27

2.3.3 Network Multicast

The Network Multicast subsystem consists of a single IP Multicast element. This element can
receive an IP data stream from a source element and distribute it to multiple IP destinations. This
eliminates the normal point-to-point limitation of IP addressing and, in particular, allows data
streams from external sent to a single IP address in the MOC to be distributed to multiple
destinations within the ground data system.

2.3.4 Network Security Services

The Network Security Services subsystem consists of a single Security Server element. This
element provides access control to and from internal ground data system platforms and services as
well as authentication of users.

2.3.5 Network Time Service

The Network Time Service subsystem provides the mechanism for establishing a consistent time
reference across the various networked ground data system components. The subsystem can
connect to an external time reference (such as NASA-36) via the Network Time Source element.
This time reference is then distributed by the Network Time Server to Network Time Clients
across the network. These clients then can provide a consistent time reference to applications
(generally via setting the system clock of the platform on which the agent resides).

ANY SUBSYSTEM
NETWORK

TIME
CLIENTS

NETWORK
TIME

SOURCE

NETWORK
TIME

SERVER

EXTERNAL
TIME SOURCE

F-TS-03

F-TS-02

F-TS-01

Figure 2.3-3 Network Time Service

3 - 1

3. Building Block Descriptions

This section provides a summary listing and catalog of the current set of Renaissance building
blocks. Section 3.1 provides a summary list of all element-level building blocks. Some of the
element-level building blocks are constructed and tailored using subelement components. Section
3.2 lists these lower level subelement building blocks. Finally, Section 3.3 provides the complete
building block catalog.

3.1 Element Summary List

This subsection provides a summary listing of the element-level building blocks identified to date.
The elements are sorted by either the real-time, off-line, or foundation architectural segments. An
identifier, name, and functional description are provided for each element. The identifier has been
selected to allow users to quickly recognize elements according to various classifications. The first
field in the identifier shows whether the element belongs to the real-time, off-line, or foundation
categories of subsystems; the second field shows the actual subsystem to which the element
belongs. The first two fields in the identifier have been chosen in a manner such that users may
use them as mnemonics for quick reference. Table 3-1 lists the identifier fields and their
definitions. Table 3-2 is the actual summary list.

3 - 2

Identifier Definition

RT Real-Time

OL Off-Line

F Foundation

CM Command

DS Distribution

EX External Interface

HS History

SM Simulation

TM Telemetry

US User Interface

DM Data Management and

Distribution

DP Data Production and Analysis

MP Mission Planning

SD State Determination and

Validation

UI User Interface

EM Electronic Mail

MN Network Management

ML Network Multicast

SS Network Security Services

TS Network Time Service

Table 3-1: Identifier Field Definitions

3 - 3

File Name : R1.EPS
Title : TBL3-2A.RSL
Creator : Windows PSCRIPT
Pages : 0

Table 3-2: Summary List of Elements

3 - 4

File Name : R2.EPS
Title : TBL3-2A.RSL
Creator : Windows PSCRIPT
Pages : 0

Table 3-2: Summary List of Elements

3 - 5

File Name : R3.EPS
Title : TBL3-2A.RSL
Creator : Windows PSCRIPT
Pages : 0

Table 3-2: Summary List of Elements

3 - 6

File Name : R4.EPS
Title : TBL3-2A.RSL
Creator : Windows PSCRIPT
Pages : 0

Table 3-2: Summary List of Elements

3 - 7

File Name : R5.EPS
Title : TBL3-2A.RSL
Creator : Windows PSCRIPT
Pages : 0

Table 3-2: Summary List of Elements

3 - 8

File Name : P1.EPS
Title : Const
Creator : Windows PSCRIPT
Pages : 0

Table 3-2: Summary List of Elements

3 - 9

File Name : P2.EPS
Title : Const
Creator : Windows PSCRIPT
Pages : 0

Table 3-2: Summary List of Elements

3 - 10

File Name : P3.EPS
Title : Const
Creator : Windows PSCRIPT
Pages : 0

Table 3-2: Summary List of Elements

3 - 11

File Name : P4.EPS
Title : Const
Creator : Windows PSCRIPT
Pages : 0

Table 3-2: Summary List of Elements

3 - 12

File Name : P5.EPS
Title : Const
Creator : Windows PSCRIPT
Pages : 0

Table 3-2: Summary List of Elements

3 - 13

File Name : P6.EPS
Title : Const
Creator : Windows PSCRIPT
Pages : 0

Table 3-2: Summary List of Elements

3 - 14

File Name : P7.EPS
Title : Const
Creator : Windows PSCRIPT
Pages : 0

Table 3-2: Summary List of Elements

3 - 15

File Name : F1.EPS
Title : TBL3-2A.RSL
Creator : Windows PSCRIPT
Pages : 0

Table 3-2: Summary List of Elements

3 - 16

File Name : F2.EPS
Title : TBL3-2A.RSL
Creator : Windows PSCRIPT
Pages : 0

Table 3-2: Summary List of Elements

3 - 16

3.2 Subelement Summary List (TBS)

3.3 Building Block Descriptions
This subsection provides detailed descriptions for each of the building blocks identified to date.
The following information is provided for each building block description:

 Functional Information
Element Title: Title of building block (for this document version, all

building blocks are elements)

Element ID: A unique identifier

Date: Date the description page was last updated

Subsystem: The subsystem to which the element belongs

Functional Description: Overview of building block functionality

Functional Capabilities: List of building block functional capabilities

Performance Profile: Building block performance requirements

Issues/Comments: Self-explanatory

 Interface Information
Interface Data: Data passed by interface

Source: Element that transmits data to this element

Destination: Element that receives data transmitted by this element

Interface Name: Self-explanatory

Interface API: Application Program Interface for this interface

Client/Server: Designates element interface as client or server

 Implementation Information
Provider Name: Name of organization providing this building block

implementation

Platforms: Platforms on which this building block implementation is
known to run

Availability Date: Date that this building block implementation is available

3 - 16

Characteristics: Implementation-specific characteristics of this building
block

Table 3-3 contains a detailed description of each building block.

A - 1

Appendix A - Glossary

Building Block: A loose term for generic or tailored subsystem, element or subelement.

Data Parameters: Data maintained by a server or producer element that may be provided on to
client or consumer element.

Generic: A generic system, subsystem, element or subelement is one that is always used with no
modifications from mission to mission. Mission configurability may be achieved through data
parameters or through tailoring.

Mission-Specific: A mission-specific system, subsystem, element or subelement is one that is
developed and managed for a specific mission.

Software Backplane: The set of Renaissance-standard APIs for providing communications
between software elements. Conceptually, elements "plug into" the standard interfaces of the
backplane (in analogy to a hardware backplane).

Software Element: An independently executing software unit that communicates with other
software elements solely through the standard interfaces defined by the Renaissance software
backplane. A software element is constructed from subelements that may be linked together or
may be separate tasks or processes. Subelements within a software element may communicate
among themselves by means other than the backplane.

Software Subelement: A configuration-controlled component of one or more software elements.
Subelements may themselves have structure, but the subelement level is the lowest level of
concern for configuration of a system for a particular mission.

Subsystem: A standard decomposition of a software system, encompassing those software
elements necessary to carry out a specific high-level functional area. For example, Spacecraft
Operations Monitoring and Mission Planning might be subsystems (these examples are for
illustrative purposes only, and do not imply a definitive decomposition of Renaissance systems).

System: A complete operational environment with clear boundaries and well-defined external
interfaces crossing these boundaries, such as the Mission Operations Center (MOC), Mission
Science Center (MSC) and spacecraft Integration and Test (I&T) systems.

Tailored: A tailored subsystem, element or subelement is one with some mission-specific code
added to a generic part in some standard way (e.g., linked in via well-defined hooks), or one in
which there is a mission-specific selection from alternatives in creating the element or subelement.
This may include selection of a COTS product as a part of the element or subelement.

B - 1

Appendix B - Acronym List

ADPE Automated Data Processing Equipment
API Application Program Interface
CDE Common Desktop Environment
COE Center of Expertise
COTS Commercial Off The Shelf
DBMSData Base Management System
DCE Distributed Computing Environment
Email Electronic Mail
FDF Flight Dynamics Facility
FTP File Transfer Protocol
GDS Ground Data System
GN Ground Network
I&T Integration and Test
ICD Interface Control Document
IPC Inter-Process Communication
Kbps Kilobits per second
LAN Local Area Network
LZP Level Zero Process
MOC Mission Operations Center
MOT Mission Operations Team
NMS Network Management System
Nascom NASA Communications
PACOR Packet Processor
PDB Project Data Base
PICS PACOR II Information and Control System
POCC Payload Operations Control Center
POSIX Portable Open System Interconnect Executive
QAWS Quality Analaysis Work Station
RF Radio Frequency
RPC Remote Process Call
RT Real-time
RTADS Real Time Attitude Determination System
SPEC 1170 Profile of standards developed by X/Open
TCSEC Trusted Computer Security Evaluation Criteria
TDM Time Division Multiplexed (telemetry)
UDP User Datagram Protocol (IP connectionless protocol)
UI User Interface
UIX User Interface and executive
UTC Coordinated Universal Time

B - 2

VC Virtual Channel
XDR External Data Representation (SUN utilities)
XPG X/Open Portability Guide

REF - 1

References

Green, D., et al., Flight Dynamics Distributed Systems (FDDS) System Architecture, Goddard
Space Flight Center, Flight Dynamics Division, 552-FDD-94/036R0UD0, August 1994

Principe, C., et al., Packet Processor II (Pacor II) Detailed Design Specification, Volume 1:
System Design Overview, Goddard Space Flight Center, Information Processing Division, 560-
7DDD/0193, May 1993

Renaissance Team, Renaissance Configuration Guide, Goddard Space Flight Center, Mission
Operations and Data Systems Directorate, to be written

Renaissance Team, Renaissance Generic Architecture, Goddard Space Flight Center, Mission
Operations and Data Systems Directorate, to be written

Schwarz, B., Transportable Operations Control Center (TPOCC) Implementation Guide for
Release 9, Goddard Space Flight Center, Mission Operations Division, 511-4SSD/0393, February
1993

Stottlemyer, A., Renaissance Standards (Draft), Goddard Space Flight Center, Mission
Operations and Data Systems Directorate, August 1994

Zhu, C., et al., Transportable Payload Operations Control Center (TPOCC) Detailed Design
Specification for Release 10, Goddard Space Flight Center, Mission Operations Division, 511-
4DDS/0693, February 1994

